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ABSTRACT

The probability distribution of daily precipitation intensities, especially the probability of extremes,

impacts a wide range of applications. In most regions this distribution decays slowly with size at first,

approximately as a power law with an exponent between 0 and21, and then more sharply, for values larger

than a characteristic cutoff scale. This cutoff is important because it limits the probability of extreme daily

precipitation occurrences in current climate. There is a long history of representing daily precipitation

using a gamma distribution—here we present theory for how daily precipitation distributions get their

shape. Processes shaping daily precipitation distributions can be separated into nonprecipitating and

precipitating regime effects, the former partially controlling howmany times in a day it rains, and the latter

set by single-storm accumulations. Using previously developed theory for precipitation accumulation

distributions—which follow a sharper power-law range (exponent , 21) with a physically derived cutoff

for large sizes—analytical expressions for daily precipitation distribution power-law exponent and cutoff

are calculated as a function of key physical parameters. Precipitating and nonprecipitating regime pro-

cesses both contribute to reducing the power-law range exponent for the daily precipitation distribution

relative to the fundamental exponent set by accumulations. The daily precipitation distribution cutoff is set

by the precipitating regime and scales with moisture availability, with important consequences for future

distribution shifts under global warming. Similar results extend to different averaging periods, providing

insight into how the precipitation intensity distribution evolves as a function of both underlying physical

climate conditions and averaging time.

1. Introduction

The shape of the distribution of temporally averaged

precipitation intensity has a long history of being rep-

resented by a gamma distribution since at least Thom

(1958). For sufficiently short averaging periods (e.g.,

daily average intensities), the typical shape of the

distribution has probability falling slowly over a few

orders of magnitude, summarizing the wide range of

precipitation intensities experienced in a given region.

Is there a fundamental explanation for this behavior

in terms of simple physical processes? The goals of this

paper are to (i) explain why temporally averaged dis-

tributions have a gamma-like distribution shape using

a simple model based on the moisture equation [e.g.,

Neelin and Zeng 2000, their (2.2); Sobel and Maloney

2013, their (1)], and (ii) provide theory for how the

gamma distribution parameters depend on physical

processes and averaging interval (e.g., 3-hourly, daily,

monthly precipitation). To anchor the discussion, we

use daily precipitation statistics as the leading example,

but results apply to other averaging intervals, as ex-

panded in the final part of the paper.

A gamma distribution, as commonly used for de-

scribing temporally averaged precipitation statistics

(Thom 1958; Ison et al. 1971; Katz 1977; Richardson

1981; Ropelewski et al. 1985; Wilks 1995; Groisman

et al. 1999; Husak et al. 2007), is given by
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, x. 0, (1)

where k is the shape parameter, u the scale parameter,

and x represents temporally averaged precipitation.
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For daily precipitation, the shape parameter controls

the probability of light and moderate daily precipitation

totals, while the scale parameter is a useful metric to

track changes of the extremes (Groisman et al. 1999;

Wilby andWigley 2002;Watterson andDix 2003;Martinez-

Villalobos and Neelin 2018b, hereafter MN18). As such,

understanding the processes that control these param-

eters has important societal value.

In this paper we show that two main ingredients can

be used to explain daily (or other temporal average)

precipitation statistics:

(i) Knowledge of the distribution of precipitation accu-

mulations, defined as the amount of precipitation

integrated over an event from start to end of pre-

cipitation. The theory for this is outlined below.

(ii) Knowledge of the distribution of the number of times

it precipitates within the temporal average scale of

interest tavg. If tavg is equal to 1 day this is referred to

as the ‘‘daily number of events distribution,’’ and

similar for other tavg.

This is shown schematically in Fig. 1. Here the y axis

shows the instantaneous precipitation rate (for brevity

‘‘instantaneous rate’’ will be simply referred as ‘‘rate’’ in

what follows), and the accumulation is the total amount

from precipitation start to termination. There are three

relatively small accumulation events on day 1 (wet day),

zero events on day 2 (dry day), and one big accumulation

event on day 3 (wet day), with the daily precipitation

totals being the summation of the accumulations in each

day. Here we show only three days, but in general there

is a distribution of the number of times it precipi-

tates in a day (daily number of events distribution),

and a distribution of the total amount that it rains

each time (accumulation distribution). The interplay

between these two distributions shapes the resulting

daily precipitation statistics.

In contrast to daily precipitation, the fundamental

physical processes that shape accumulation distribu-

tions are reasonably well understood. This distribution

by definition is only affected by processes occurring in

the wet regime (from precipitation onset to termina-

tion). At the most fundamental, accumulation distri-

butions can be understood using a few observationally

constrained ingredients, based on the observed rela-

tionship between precipitation and column water va-

por q (Raymond 2000; Bretherton et al. 2004; Peters

and Neelin 2006; Neelin et al. 2009; Muller et al. 2009).

These include (i) a fundamental climate equation (the

column water vapor equation), (ii) a threshold for pre-

cipitation onset, which reflects the observation that

precipitation tend to start when column water vapor

exceeds a certain threshold, given by convective in-

stability or large-scale saturation, and (iii) a similarly

defined threshold for precipitation termination. Us-

ing these simple ingredients, Stechmann and Neelin

(2014, hereafter SN14) derive the fundamental shape

of accumulation distributions, with qualitative success

in explaining observed distributions (Peters et al.

2001, 2010; Deluca and Corral 2014; MN18). Impor-

tantly, the parameters of the SN14 derived accumu-

lation distribution can be directly related to processes

occurring in the wet regime, including a dependence

of the probability of the most extreme accumulations

on column water vapor (Neelin et al. 2017, hereafter

N17), with important expected consequences under

global warming.

The second important point is the distribution of the

number of times it precipitates in a given time interval

of interest. This number of events distribution encap-

sulates the effects of intermittency (Schleiss 2018) on

the resulting time-averaged precipitation distributions.

Here we show that this distribution depends on both the

dry (i.e., between accumulation events; see Fig. 1) and

FIG. 1. Schematic showing an example of precipitation rate (mmh21) for three consecutive days. The area under the curve from event

onset and termination is the event accumulation (mm). The total precipitation in a day is the summation of the accumulation events in that

day. Events starting in one day and finishing the next are discussed in section 4.
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wet (within precipitation accumulation events) regimes,

as opposed to accumulation distributions that only de-

pend on wet regime physics. This allows a conceptual

separation between dry and wet regime effects on time-

averaged precipitation statistics.

In this paper we show how both these processes oc-

curring in the wet and dry regimes combine to give shape

to the observed precipitation distributions. Section 2

gives a brief overview of accumulations and daily pre-

cipitation distributions in observations. Section 3 pres-

ents two simple stochastic prototypes that are used to

model the dry and wet regimes with simplified physics,

and that provide a representation of daily (or longer

averages) precipitation distributions. While reality

is considerably more complex than these models, we

argue that their simplicity is their main strength, as

important insight into this problem can be gained that

can be used to interpret observed temporally averaged

precipitation distributions. Section 4 provides an expla-

nation of why daily precipitation distributions are well

fitted by gamma-like distributions. We derive analytical

approximations for the gamma distribution parameters

as a function of key physical processes on both wet and

dry regimes in section 5. Section 5 also exemplifies how

the shape of the daily precipitation distribution respond

to changes of wet and dry regime dynamics. Section 6

explains how distributions change as a function of

averaging interval, both subdaily and longer-than-daily

precipitation averages. Finally, we conclude and discuss

results on section 7, with particular emphasis on global

warming implications.

2. Accumulation and daily precipitation
distributions

The main goal of this paper is to provide an expla-

nation of why precipitation distributions can be well

fitted by gamma-like distributions. We note that there

are several other distributions that are also used to de-

scribe precipitation (e.g., Woolhiser and Roldán 1982;

Cho et al. 2004; Papalexiou and Koutsoyiannis 2013;

O’Gorman 2014; Kirchmeier-Young et al. 2016). It is not

the intention of this study to distinguish the often subtle

differences in fit among these distributions. For our

purposes we employ the gamma distribution because

parameters can be easily interpreted, provides a good

enough fit in most cases, and we can track distribu-

tion changes quantitatively. In addition, as elaborated

below, gamma distributions resemble accumulation

distributions in mathematical form, so the similari-

ties and differences between accumulation and daily

precipitation distributions can be made more quanti-

tative. To highlight parallels between daily precipitation

(or other averaging intervals) with accumulations mea-

sured inmillimeters, in the rest of the paper we look at the

distribution of daily precipitation totals measured in mil-

limeters, but a conversion to daily precipitation intensities

measured in millimeters per day is straightforward.

While for longer averages the usual gamma distri-

bution representation given in (1) is more instructive,

for daily precipitation P, we prefer a representation

of the form

p
P
5AP2tP exp

�
2

P

P
L

�
, (2)

with A5G(12 tP)
21
PtP21
L and G the gamma function,

because it highlights the parallels between daily pre-

cipitation and accumulation distributions. In this case

tP [tP 5 1 2 k in (1), tP , 1] can be regarded as a

power-law exponent governing the rate of decay of

the distribution or probability density function (PDF)

in the power-law range, and PL [PL 5 u in (1)] can be

regarded as a daily precipitation cutoff scale, where the

probability drops sharply.

Accumulations over precipitation events—fromwhen

precipitation exceeds a small threshold to when it drops

below that threshold—are defined as

s5

ðt
0

R(t0) dt0 . (3)

Here t is the event duration, andR(t0) is the precipitation
rate at time t0 after the precipitating event has started.

Accumulation distributions are well fitted in observa-

tions (Peters et al. 2010; Deluca and Corral 2014;MN18)

and models (SN14; N17) by an expression of the form

p
s
5Bs2t exp

�
2

s

s
L

�
, (4)

where t is a power-law exponent (usually. 1) governing

the rate of decay of ps in its power-law range, sL is a

cutoff scale for which the probability of extreme accu-

mulation events decay sharply, and B is a normalization

factor. An expression resembling (4) has been derived

analytically under simplifying assumptions by SN14, and

will be further discussed in section 3a.We note that after

(2) has been rearranged, daily precipitation and accu-

mulation distributions formulas look similar, with the

main difference being the sharper power-law exponent

for accumulations (t . 1 and tP , 1). In addition, both

(2) and (4) highlights the importance of the cutoffs PL

and sL in controlling the probability of extremes. For

t . 1 there must a change in form for very small values

of s, as discussed below, but this is smaller than can

typically be observed.
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There are different approaches used in the literature

to fit distributions to data. To fit accumulations and daily

precipitation distributions we use a simple linear regression

technique (see appendixA), with the estimated parameters

being correlated with estimations using maximum likeli-

hood (Thom 1958; Husak et al. 2007), and the method of

moments (Fig. S1 in the online supplemental material).

As notation, parameters estimated using the method of

moments are denoted with a hat symbol (̂ ), and un-

adorned parameters are estimated using the regression

technique.

Figure 2a illustrates the key features of accumula-

tion and daily precipitation distributions in observations.

Here, accumulation and daily precipitation values are

calculated using 1min precipitation values from a DOE

ARM site station located inManus Island in the western

tropical Pacific (Gaustad andRiihimaki 1996; Holdridge

and Kyrouac 1997). A gamma distribution fit, (2), is

overlaid on the daily precipitation distribution, and

a fit given by (4) is overlaid on the accumulation distri-

bution. The difference in the power-law exponent is

immediately apparent, with accumulations decaying

faster in the power-law range. The effect of the cutoff

in limiting the probability of the largest events is also

clear, especially compared to the respective dashed lines,

which shows what the probability would be without

the cutoffs. These main features are not restricted to

this particular dataset. Similar features can be seen

across a range of meteorological regimes for accumu-

lations in (Peters et al. 2010; Deluca and Corral 2014),

and for accumulation and daily intensity comparison

in MN18.

3. Modeling accumulation and daily
precipitation distributions

a. Model setup

To explain leading-order effects controlling daily pre-

cipitation distributions, we use a simple column model

of the dry (nonprecipitating) and wet (precipitating)

regimes based on a simplification of the column water

vapor equation. This model, introduced by SN14,

has been used to derive analytically the main aspects

of accumulation distributions as a function of the rel-

evant physics of the system (SN14; N17). In the model,

precipitation is assumed to begin when column water

vapor q reaches a certain threshold qc, as occurs in

observations (Peters and Neelin 2006; Neelin et al.

2009; Ahmed and Schumacher 2015; Schiro et al. 2016;

Kuo et al. 2018) and general circulation models (Sahany

et al. 2012, 2014). Similarly, precipitation termination

occurs when q has decreased below another threshold

qnp5 qc2 b, with b a hysteresis parameter. Themodel is

given by

dq

dt
5E1C1D

E
h (dry regime), (5)

dq

dt
5E1C2R(q)1D

P
h (wet regime). (6)

Here, E is a positive mean evaporation source, C is the

climatological mean moisture convergence (C. 0 for

convergence on the column), andR(q) is the precipitation

rate. Fluctuations in moisture convergence are parame-

terized by DEh in the dry regime, and DPh in the wet

regime, with h being Gaussian white noise [hh(t)i 5 0,

hh(t)h(t0)i5 d(t2 t0)],with h�i denoting expectation value),
and DE and DP the noise amplitude in the respective re-

gimes. For analytical simplicitywe setE1C5 0 in thewet

regime in what follows, as these terms are typically

an order of magnitude (or more) smaller than R(q).

We derive analytically the effect that this makes—

essentially a slight modification to the cutoff scale sL
of order d � 1—and show numerically its conse-

quences in section S1 in the supplemental material.

Another simplification of the model is that the moisture

equation is independent of the large-scale flow. This im-

plies that aspects related to the spatial organization of

precipitation are not explicitly treated here. However,

key features of the observed PDF of spatial clusters

(Quinn and Neelin 2017) can be captured in models re-

lated to the one used here (Hottovy and Stechmann 2015;

Ahmed and Neelin 2019). Despite simplifications, the

essential elements explaining accumulation distributions—

the interplaybetweenmoisture convergencefluctuations and

moisture loss by precipitation—are retained in themodel.

We consider two variants of the precipitation pa-

rameterization R(q) in the above model, for brevity de-

noted ‘‘on–off precipitation’’ and ‘‘ramp precipitation’’

given by

R(q)5R
0

(on–off precipitation), (7)

R(q)5a(q2 q
np
) (ramp precipitation) . (8)

In the on–off precipitation case, the existence of a

threshold for precipitation onset and termination

generates a first-passage process problem with solu-

tion for the distribution of accumulations (Redner

2001; SN14; N17). This solution corresponds to an in-

verse Gaussian (Tweedie 1957; Folks and Chhikara

1978), and is given by

p
s
5B exp 2

s2

s
L
s

� �
exp 2

s

s
L

� �
s23/2 , (9)
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with B5 (s/
ffiffiffiffiffiffiffiffi
psL
p

) exp(2s/sL). Note that (9) has the

same shape as (4) for s� s2/sL (which is well satisfied

except for small s), with t 5 1.5. Here s is the mean

accumulation, and sL is the accumulation cutoff

given by

s5 b, s
L
5
2s2

s

s
5

2D2
P

R
0

, (10)

with s2
s the accumulation variance. Using (B2) we can

show that

s
L
}

ffiffiffiffi
t
L

p
D

P
, (11)

where tL is a similarly defined precipitating event du-

ration cutoff (discussed below). From (11) we can see

that sL (with same units as q) is proportional to the

amplitude of moisture convergence fluctuations (}DP)

in the wet regime.Under increasingmoisture availability,

these fluctuations are expected to scale with moisture

(although locally dynamical effects can be important),

which implies an extension of the power-law range and

a large increase in probabilities for extremes under a

global warming scenario (N17; Norris et al. 2019a). The

ramp precipitation case provides a more realistic sce-

nario for the precipitating regime, where precipitation

acts as a negative feedback opposing further moisture

increases. While an analytical solution for accumulation

distributions in this case is not available, section S2 shows

that (11) also holds numerically.

The physical mechanisms and mathematical deriva-

tion of why the accumulation distribution in the on–off

precipitation case is given by (9) are discussed by SN14

and N17, and why more generally (4) should hold as a

good approximation for observed accumulation distri-

butions is discussed by N17 (see also N17 Fig. 4). For the

reader’s convenience we repeat the derivation of (9) in

section S3 and summarize its main points here. In the on–

off case the relation between column water vapor q and

accumulation s can be made clearer by rewriting (6) as

dq 5 2ds 1 Dshsds, with Ds 5DP/R
1/2
0 and hs white

FIG. 2. Accumulations (blue circles) and daily precipitation (red

circles) distributions in (a) observations at Manus Island (28S,
1478E; January 1998, September 2012), (b) generated by the model

with on–off precipitation, and (c) generated by the model with

ramp precipitation. Parameters of the models are E5 0.1mmh21,

C5 0:2mmh21, b 5 0.2mm, DE 5 3mmh21/2, qc 5 65mm, with

R0 5 9mmh21 and DP 5 17mmh21/2 in the model with on–off

precipitation, and a5 0.35 h21 andDP5 12mmh21/2 in the model

 
with ramp precipitation. Parameters are selected to generate sim-

ilar accumulation and duration moment ratios (hs2i/hsi and ht2i/hti,
respectively, with h�i denoting the expectation value) compared to

Manus Island observations. All model parameters are also listed in

Table S1. Accumulation and daily precipitation distributions are

fitted following appendix A (blue and red solid lines, respectively)

only taken into account bins with 10 or more counts, except for

accumulations in the on–off precipitation case, where the analytical

formula (9) is used. Blue and red dashed lines show only the power-

law part of the fits to the accumulation and daily precipitation

distributions.
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noise in the s coordinate. This captures themain physical

mechanisms governing the column water vapor equation

within a precipitating event—the moisture converged

to/diverged from the column (Dshsds) and the loss of

moisture by precipitation accumulation (2ds). If pre-

cipitation were not amoisture sink, there would bemany

trajectories where q(s) lingers above the critical threshold

for event termination, yielding a long tail for the proba-

bility of event accumulation ps } s21.5 in this case. In

reality, moisture loss by precipitation limits the long in-

cursions of q(s) above the threshold for event termination,

as captured by the exponential term in (9) exp[2(s/sL)].

While there is no analytical solution for ps available

in the ramp precipitation case, the two competing

processes (fluctuations in moisture convergence and

moisture loss due to precipitation) also occur, which

yield a similar form for the accumulation distribu-

tion numerically, although with a modified power-law

exponent.

By similar means as before, an analytical solution for

the distribution of wet-spell durations can be calculated

for the model with on–off precipitation (see appendix

B). This solution also contains a cutoff for long durations

tL, which is relevant to certain approximations for

understanding time-averaged intensities, discussed in

section 4. Similarly, the dry-spell duration distribution

also has an analytical solution (appendix B), although it

should be noted that this solution is unrealistic for low q

values. In integrating the model (5) we simply set a rigid

boundary at q 5 1mm, with q restored to the value at

the previous time step if the boundary is reached.

A more realistic treatment of the dry regime at low

moisture values is implemented in a forthcoming pa-

per. Nevertheless, the main way in which the dry re-

gime affects daily precipitation distribution, namely

in the different daily number of events distributions

(section 4b) for mean moisture convergent (C. 0)

and divergent (C, 0) conditions, is still captured by

this setup.

b. Daily precipitation and accumulation distributions
in the model

As an example of the accumulations and daily pre-

cipitation distributions arising from the setup in (5) and

(6), we integrate the model, using both on–off and ramp

precipitation variants, for 100 years, using the Euler–

Maruyama stochastic integration scheme (Gardiner 2009;

Ewald and Penland 2009), with a time step of 0.6 s.

Parameters in the wet regime (see caption) are chosen

to generate similar accumulation and duration moment

ratios (see section S4) compared to observations. Pa-

rameters in the dry regime are similar to the ones

chosen by SN14 and Abbott et al. (2016), with the

value of C in line with observational estimates (Seager

and Henderson 2013). The short time step of 0.6 s is

needed to generate the smallest accumulation and daily

precipitation values in the on–off precipitation case,

such as to compare with Manus Island observations.

This time step will be increased in subsequent sec-

tions. At each time step q in (5) and (6) is calculated,

from which it is decided whether it is precipitating

(q. qc) or not (q, qnp), and fromwhich a precipitation

rate can be calculated using (7) and (8) as appropriate.

Then accumulations and daily precipitation values

can be calculated from the generated precipitation-rate

time series.

Figures 2b and 2c show the resulting accumulation

and daily precipitation distributions, in the on–off pre-

cipitation case and the ramp precipitation case, respec-

tively. Gamma distribution fits are overlaid on the

simulated daily precipitation distributions. With some

small differences, the resulting distributions show fea-

tures much like what is seen in observations in both

cases (Fig. 2a). Specifically, both daily precipitation and

accumulation distributions have a cutoff scale, evident

when comparing to the dashed lines indicating no cutoff,

and the power-law range in the daily precipitation dis-

tributions is less steep than for accumulations. Given the

relative simplicity of the setup, these results are en-

couraging and suggest that the physics included in the

models is adequate to explain fundamental processes

underlying these distributions. For the sake of obtaining

analytical expressions, we use the on–off precipitation

parameterization in most of what follows. The ramp

precipitation model produces results that are quali-

tatively similar to the on–off precipitation model (see

supplementary information).

4. What explains the shape of the daily
precipitation distribution

In this section we provide a rationale for how daily

precipitation distributions get their shape. The two in-

gredients are (i) the distribution of accumulations and

(ii) the daily number of events distribution. Point

(i) depends entirely on wet regime properties, while

point (ii) depends on both wet and dry regime dynamics.

This allows a conceptual separation of mechanisms be-

tween wet and dry regime processes controlling daily

precipitation distributions. We focus on daily precipi-

tation here, with section 6 showing other averaging

intervals.

Themain requirement for this partition to work is that

tavg � tL, with tavg the averaging interval (1 day in this

case), and tL the wet-spell duration cutoff [tL 5 2D2
P/R

2
0

in the on–off precipitation case; (B2)]. This holds
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reasonably well in most regions, although it may be-

come more difficult to meet for regions or seasons

with a preponderance of stratiform precipitation (small

R0) or large moisture convergence fluctuations in the

wet regime (largeDP). This requirement is put in place

so the whole accumulation distribution can be sampled

during tavg, and that boundary effects from when a day

starts and ends are small. This requirement also im-

plies that the number of events and accumulation

distributions are asymptotically independent. In this

section and in the derivation of analytical results in

section 5 we assume that we are in a regime where

tavg � tL holds perfectly. We test deviations from

this requirement for tavg 5 1 day numerically in

section 5. In practice, subdaily precipitation distri-

butions are the most affected. However, some insight

can still be gained for these distributions, as discussed in

section 6a.

a. Distribution of daily precipitation from the
accumulation distribution

The probability distribution of accumulations, (9),

provides key information about the distribution of daily

precipitation (and other averaging intervals). The sum

over accumulations in a given day will yield the pre-

cipitation over that day, so it is useful to sort by the

days that contain a given number of events n. De-

noting Pn as the total precipitation in days with

n events, then

P
n
5�

n

i

s
i
. (12)

This is a quantity with clear properties that provides

a step on the way to obtaining insight into the daily

precipitation distribution. In calculating it from data,

one simply sorts by the number of times it rained during

a day. The distribution of Pn values, here denoted as the

‘‘conditional daily precipitation distribution’’ pn is

given by

p
n
5B

n
exp 2

n2s2

s
L
P
n

� �
exp

�
2
P
n

s
L

�
P23/2
n , (13)

with Bn 5 (ns/
ffiffiffiffiffiffiffiffi
psL
p

) exp(2ns/sL). This formula for pn,

(13), is obtained from knowledge of the accumulation

distribution, (9). See appendix C for details of this

derivation. This distribution pn has the same shape as

the accumulation distribution ps in (9), but with mean

Pn 5 ns. Similar to the accumulation distribution, pn
only depends on processes occurring while precipitating.

Figure 3a shows examples of pn distributions for differ-

ent n values. Since it typically rains a larger daily pre-

cipitation amount in days withmany accumulation events,

the pn distributions, (13), show lower probability for

small daily precipitation amounts and higher probability

for large daily precipitation amounts for increasing n.

Consequently, as n gets large the resulting pn distri-

butions look less asymmetric, that is, evolve to be less

skewed (skewness decreases with n as n21/2), with

mean increasing proportionally to n, and with fixed

sL, although it should be noted that the interpretation

FIG. 3. (a) Examples of pn distributions for different values of

n, for parameters sL 5 45 mm and s equal to the mean of the

accumulations in the integration used in (b). (b) Daily number

of events distribution calculated from a 500-yr run of the

model, (5)–(7), with parameters E 5 0.1 mm h21, C5 0, DP 5
15 mm h21/2, DE 5 3 mm h21/2, R0 5 9 mm h21 and b 5 1 mm

[note that sL 5 (2D2
P/R0)5 45mm]. All model parameters are also

listed in Table S1. (c) Daily precipitation distribution calculated

from the same model run, and increasingly better approximations

of (14),�nmax

n wnpn. The daily precipitation calculated directly from

the integration is denoted by black 3 symbols.
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of sL as a distinct cutoff in Pn is clear only for low

enough n.

b. Daily number of events distribution

From the pn distribution, the daily precipitation dis-

tribution can be calculated as the mixture

p
P
5 �

nmax

n

w
n
p
n
, (14)

with wn (the weights of the mixture; �nmax

n51 wn 5 1) the

daily number of events distribution. See Frühwirth-
Schnatter (2006) formore details onmixture distributions.

Figure 3b shows the daily number of events distribu-

tion calculated from a long 500-yr integration of (5)

and (6). This distribution gives the information on the

fraction of wet days with n events. For this particular

choice of parameters (see caption) it rains most often

once per day (;18% of rainy days), and the probability

decreases monotonically for larger n. This quantity de-

pends on both wet and dry regimes as shown in section

5b. An analytical solution for this distribution is not

presently available, although it can be readily calculated

from observations or from model integrations.

c. Resulting daily precipitation distribution

Figure 3c shows graphically how daily precipitation

distributions get their shape as we increase nmax in (14).

Only considering n5 1 the resulting distribution is equal

to the accumulation distribution. As we increase nmax we

observe that small size values lose probability, and large

daily precipitation values increase in probability, as less

asymmetric pn distributions (Fig. 3a) are incorporated.

This process flattens out the resulting distribution,

generally resulting in a daily precipitation power-law

exponent tP that is smaller than the accumulation dis-

tribution power-law exponent. This implies that the re-

sulting daily precipitation distribution can often be fitted

by gamma distributions (tP , 1). We note that the ap-

parent power-law range in the gamma distribution is not

precisely a power law as in the accumulation solution.

The power-law approximation holds well because a true

scale free range is being modified by a procedure that

does not introduce any dominant scale, thus leaving a

range that remains essentially scale free. As all wnpn are

included, the distribution resulting from (14) is very

similar to the one calculated directly from the integra-

tion. This leads to a dependence of the daily precipita-

tion distribution on the parameters of the underlying

accumulation distributions, as further elaborated below.

This simple model thus provides a rationale for how

daily precipitation PDFs arise, and why they can be

fitted by gamma distributions.

5. Analytical approximation of daily precipitation
distribution parameters

a. Analytical approximations

In this section we provide analytic expressions for the

mean and variance of daily precipitation distributions,

and use these expressions to estimate the gamma dis-

tribution parameters as a function of the underlying

accumulations and daily number of events distributions.

The daily precipitation mean P and variance s2
P are

given by (see appendix D for derivation)

P5w s , (15)

s2
P 5s2

ws
2 1ws2

s , (16)

where s is the mean storm accumulation, s2
s is the ac-

cumulation variance, and w and s2
w are the mean and

variance of the number of precipitating events in a day

(the first two moments of the daily number of events

distribution in section 4b), considering only wet days.

This shows that if the mean number of precipitating

events occurring per day increases and/or the mean ac-

cumulation per event increases, then the mean daily

precipitation increases. Similarly, the daily precipitation

variance has weighted contributions from both the ac-

cumulation variance and the variance of the number of

precipitating events per day.

From (15) and (16), expressions for the daily precipita-

tion power-law exponent tP and cutoffsPL can be obtained

using the method of moments (see appendix D) as

P̂
L
5

s2
w

w
s1

s
L

2
, (17)

t̂
P
5 12

w

s2
w

w
1

s
L

2s

. (18)

We should note that maximum likelihood estimates of

tP and PL will generally differ from the estimates calcu-

lated above, but they will be proportional (see Fig. S1). As

previously stated, w and s2
w depend on both dry and wet

regimes, and encapsulate the effects arising from aggre-

gating different accumulation events in the averaging in-

terval tavg of interest. On the other hand, sL and s depend

only on thewet regime, and their contribution to P̂L and t̂P
is independent from tavg. That is, s and sL contribute the

same to daily or monthly precipitation statistics, with

the difference between statistics for different averaging

intervals being accounted by w and s2
w.

b. Exploring the parameter space

In this section we investigate the influence of both wet

and dry regimes in the daily precipitation distribution
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power-law exponent and cutoff. In each case we use a

number of 500-yr integrations of (5) and (6) for different

parameters in the dry and wet regimes, using an in-

tegration time step of one minute for speed. Analytical

formulas (17) and (18) are used to interpret the results.

1) DEPENDENCE ON WET REGIME

Keeping the dry regime fixed, Figs. 4a,c show the

dependence of the resulting daily precipitation gamma

distribution parameters on different sL values. As shown

in (11), sL is proportional to the amplitude of mois-

ture converge fluctuations (}DP) in the wet regime.

Figure 4a shows that the accumulation and daily pre-

cipitation cutoffs are very well correlated. That is, in-

creases in the accumulation cutoff are associated with

increases in the daily precipitation cutoff. This relation

between cutoffs is also reproduced in the ramp pre-

cipitation case (Fig. S4a). This dependence can be ex-

plained from (17) by noting that the expression s2
w/w is

of order 1 for daily time scales (Fig. S5), and that typi-

cally sL � s. This implies that for daily time scales PL is

set by the wet regime with

P̂
L
} s

L
. (19)

This provides an explanation for the correlation between

accumulation cutoff and daily precipitation cutoff values

observed in weather station data in the United States

(MN18).While the influence of the first term in the right-

hand side of the P̂L equation, (17) is small at daily time

scales, it will increase in importance as we increase the

averaging interval. This is discussed in section 6.

FIG. 4. Daily precipitation cutoff scale P̂L as a function of parameters associated with (a) the wet and (b) the dry

regimes. (c),(d) As in (a) and (b), but for the exponent t̂P. For the wet regime cases in (a) and (c), P̂L and t̂P values

are calculated from different 500-yr model integrations with the on–off precipitation parameterization for different

values of sL 5 2D2
P/R0 (R0 fixed at 10mmh21), and the dry regime fixedwith parametersE5 0.1mmh21,C5 0, and

DE 5 3mmh21/2. For the dry regime cases in (b) and (d), P̂L and t̂P values are calculated from 500-yr model

integrations with on–off precipitation for different values ofC, with remaining values kept fixed atE5 0.1mmh21,

DE 5 3mmh21/2, R0 5 10mmh21, and DP 5 12mmh21/2. In all cases qc 5 65mm and b 5 1mm. All model

parameters are also listed in Table S1. Analytical approximations to these values (section 5a) are plotted as

blue lines.
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Unlike the accumulation power-law exponent t, which

always has a value of 1.5 in the on–off precipitation case,

the daily precipitation power-law exponent tP exhibits

an important dependence on model parameters. Figure 4c

shows that t̂P is larger for increases in moisture con-

vergence fluctuations amplitude (larger sL) all else being

equal. Similar behavior is found in the ramp model

(Fig. S4c), although the range of variation of t̂P is

more constrained in that case.

The left column of Fig. 5 shows the distributions as-

sociated with the left column of Fig. 4 for values DP 5
10, 15, 20mmh21/2 (R0 fixed), corresponding to sL 5 20,

45, 80mm, respectively, with dry regime parameters fixed

(C5 0). Figure 5a shows the accumulation distributions,

which are clearly different due to the different cutoff.

Changes in wet regime dynamics also impact the daily

number of events distribution. Larger moisture con-

vergence fluctuations in the wet regime (larger DP)

are associated with fewer total events (Fig. S6a), and

to a number of events distribution more weighted

toward fewer events per day (Fig. 5c). This apparently

occurs because for increasing DP the system spends

more time precipitating, which results in larger but

fewer events. This implies a larger contribution from

more asymmetric conditional daily precipitation distri-

butions pn (13) in (14), which results in a steeper daily

precipitation power-law range for larger DP (or sL)

(Fig. 5e), which agrees with numerical and analytical

results (Fig. 4c). It can also be seen that increases in sL
translates to similar increases in the daily precipitation

cutoff (Fig. 5e), in agreement with (19).

2) DEPENDENCE ON DRY REGIME

In this section we explore the dependence of the

gamma distribution parameters for variations in the dry

regime. Keeping the wet regime fixed (to sL 5 45mm),

Figs. 4b and 4d show the dependence of t̂P and P̂L on

climatological column moisture convergence C. This

variable is the main control on how frequently it pre-

cipitates (Fig. S6b), with C. 0 indicating precipitation

prone regions, and C, 0 indicating dry regions (e.g.,

high pressure subtropical regions). While C controls

how often it precipitates, it does not have a sizable effect

on the value of the daily precipitation cutoff (Fig. 4b).

The power-law exponent tP does have a slight depen-

dence on C, with a less steep power-law exponent in re-

gions of positive climatological moisture convergence, all

else fixed. The overall behavior is replicated in the ramp

precipitation case (Figs. S4b,d).

The right panel in Fig. 5 shows the distributions

associated with the right panel in Fig. 4 for C5
20:1, 0:1, 0:3mmh21 (E1C5 0, 0:2, 0:4mmh21), cor-

responding to mean moisture divergent, lightly and

strongly convergent conditions, respectively. The wet re-

gime is fixed (sL 5 45mm). Since the wet regime is fixed,

the three cases considered here have the same accumula-

tion distribution (Fig. 5b). Consequently, the dry regime

may only affect daily precipitation distributions through its

effect on daily number of events distributions (Fig. 5d). As

expected, the number of events distribution is weighted

toward fewer events per day for mean moisture diver-

gent conditions, as raining events are rarer in that case.

This implies that for the C520:1mmh21 case there is

a larger contribution of more asymmetric conditional

daily precipitation distributions pn, (13), that make up

the daily precipitation distribution, (14). This results in a

steeper power-law range in this case, in agreement with

numerical and analytical results in Fig. 4d.

3) SUMMARY

In summary, the wet regime controls the daily pre-

cipitation cutoff PL (PL } sL). Both wet and dry regimes

have influence on the power-law exponent tP—steeper

power law for larger DP in the wet regime and/or de-

creasing C (i.e., mean moisture divergent conditions

in the dry regime)—all else being equal. Wet regime

parameters can causemore variation in tP (over the range

considered), but the presence of the dry regime is

essential to setting the difference between tP and the

exponent for accumulations t.

4) CAVEAT ON ANALYTICAL APPROXIMATIONS

It should be noted that the analytical approximations

(17) and (18) provide a good understanding of the nu-

merical values shown in Fig. 4, but the comparison is not

perfect. This occurs because as sL increases in Figs. 4a and

4c so does tL, and the condition tavg� tL implies that (17)

and (18) progressively becomes a worse approximation.

For the parameters in Fig. 4, when sL is equal to 80mm, tL
is equal to 8h, a value not that well separated from 1 day.

The analytical approximations hold better as tavg increases

as can be seen in Fig. S7. An implication of the tavg� tL
requirement is the asymptotic independence between the

accumulation and number of events distributions. This is a

simplification, as short events tend to preferentially occur

in days with many events, and longer events to preferen-

tially occur in days with few events. Despite this, leading-

order effects are well captured by (17) and (18), and can

be used to provide insight into how gamma distribution

parameters respond to dry and wet regime physics.

6. How precipitation distributions change as a
function of averaging interval

As can be seen in (17) and (18), there are two main

effects that explain precipitation distributions over a
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fixed averaging interval. The first one, which may be

thought as a fundamental effect arising from the

lifetime of individual storms, is the distribution of

accumulations, which impacts t̂P and P̂L mainly by the

value of the underlying accumulation cutoff sL. This

contribution is completely independent from averaging

considerations. The second effect, whichmay be thought

as arising from the temporal aggregation of individual

storms within the fixed averaging time of interest, will in-

clude the effects from averaging. Here those effects are

encapsulated by themeanw and variances2
w of the number

of precipitating events in a particular averaging interval. For

fixedmodel parameters, this second effect is the one that

controls the statistics as a function of averaging interval.

Before proceeding, we point out some practical con-

sequences that the resolution of observational data has

FIG. 5. (a) Accumulation distributions for three 500-yr runs of (5) and (6) with different amplitude of moisture

convergence fluctuations in the wet regime (DP5 10, 15, 20mmh21/2) with the dry regime fixed. (b) Accumulation

distributions for three 500-yr runs of (5) and (6) with different mean moisture convergence in the dry regime

(E1C5 0, 0:2, 0:4mmh21) with the wet regime fixed. (c),(d) Daily number of events distribution calculated from

the same run as (a) and (b). (e) Resulting daily precipitation distribution arising from the interplay between (a) and

(c). (f) Resulting daily precipitation distribution arising from the interplay between (b) and (d). Common

parameters used for both regimes areR05 10mmh21,DE5 3mmh21/2, and b5 1mm. The dry regime is fixedwith

C5 0 in the left column, and the wet regime is fixed with DP 5 15mmh21/2 in the right column. All model

parameters are also listed in Table S1.
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on observed distributions. In the model world it is pos-

sible to generate precipitation data at high temporal

resolution. In contrast, observational data is often only

available through already discretized accumulated values

(e.g., 1 h precipitation). The model with on–off precipi-

tation generates an accumulation power-law exponent

t 5 1.5 and cutoff sL 5 2D2/R0 when precipitation is

calculated using instantaneous values generated every

dt interval (with dt small). Using coarser temporal

resolution, as in observations, results in power-law

exponents ,1.5 (e.g., 1.3, when averaging from 1 to

15min; see Fig. S8) and also in somewhat smaller values

of sL. This effect occurs for reasons analogous to the

changes in time-averaged intensities: coarse graining the

data before computing event accumulations tends to

cause some small events that, if observed at high reso-

lution, are interrupted by short dry spells to instead be

counted as larger events. This should be taken into ac-

count when evaluating distributions in observations.

a. Subdaily precipitation distributions

The study of subdaily precipitation statistics is an ac-

tive area of research (e.g., Lenderink and vanMeijgaard

2008; Westra et al. 2014; Barbero et al. 2017; Prein et al.

2017), so it seems useful to test to what extent the insight

gained at daily time scales can be translated to subdaily

scales as well. As previously stated, expressions (17) and

(18) are approximations to gamma distribution param-

eters under the assumption that the averaging interval

tavg is much longer than the local storm duration cutoff

tL; see (B2). This assumption becomes progressively worse

as the averaging interval is decreased. This occurs be-

cause long events, that preferentially contribute to the tail

of the accumulation distribution, cannot be fully sampled

in a short averaging interval. Despite this, qualitative

statements based on how precipitation distributions

arise (see section 4) may still provide insight.

Figure 6a shows the accumulation, 3-h, 12-h, and daily

precipitation distributions calculated from almost 15 years

of 1min data from Manus Island station. It can be seen

that a power lawwith a cutoff is a good fit in all cases. All

the time-averaged distributions have a gentler power-

law range decay compared to accumulations, and the

power-law exponent decreases as we increase the aver-

aging interval. The cutoff scale (as would be expected)

increases with averaging interval, although the increase

is relatively slow.

Figure 6a may be compared to Fig. 6c generated by

the model with on–off precipitation. We integrate the

model for 100 years (for consistent statistics) using a

time step of 0.6 s (necessary to resolve short time vari-

ations and small precipitation increments) from which

1-min totals are calculated, to make the output more

consistent with observations in computing the distribu-

tions. The parameters (see caption) were chosen to give

similar accumulation and duration moment ratios as

observations (hs2i/hsi and ht2i/hti, respectively), and a

value of C5 0:2mmh21 was used to be consistent with

the mean moisture convergent conditions of Manus

Island. Besides that, no other attempts to tune pa-

rameters of the model were made. While there are

differences in the tP and PL parameters calculated,

Fig. 6c shows good qualitative agreement with obser-

vations. Specifically, all the time-averaged distributions

are well fitted by gamma distributions, with the correct

ranking of power-law exponents simulated, and an

(albeit faster) increase in the cutoff with averaging interval.

b. Longer-than-daily precipitation distributions

A comparison between observations and model for

longer averages can also be made. In this case we use

64 years of hourly precipitation data from the Miami

Airport station available from the NOAA/NCEI Cli-

mate Data Online system. The minimum instrumental

resolution is 0.254mmh21 (compared to 0.1mmmin21

inManus Island) and observations are given in multiples

of 0.254mmh21. Figure 6b shows this station’s accu-

mulation, daily, 2-day, and 5-day precipitation dis-

tributions. Some of the same features as the subdaily

precipitation distributions are seen. All time-averaged

distributions have a smaller power-law exponent than

accumulations, and the power-law exponents decrease

in magnitude as the averaging interval is increased. In

addition, the cutoffs increase slowly with averaging in-

terval. Note that the accumulation distribution power-

law exponent being smaller (in magnitude) than 1 most

likely occurs due to the observations being given at 1 h

intervals (see Fig. S8; also see section S4).

Noting that bothManus Island andMiami stations are

located in regions with plentiful convection, it is worth

asking whether accumulation and temporally averaged

precipitation distributions behave similarly in regions

and seasons dominated by frontal precipitation. We re-

peat the analysis leading to Fig. 6b for two other stations,

one located in the northeastern United States and the

other in Southern California, for both annual and the

extended winter (November–April) season. In all cases

the main features seen in Fig. 6b—the general shape of

the distributions, the sharper power-law exponent for

accumulation compared to daily precipitation distribu-

tions, and the decrease of tP for increasing tavg—are also

present in the other locations and season analyzed

(Fig. S9). This suggests the robustness of these results to

geographical location and main type of precipitation.

As before, we integrate the model with on–off pre-

cipitation with parameters chosen such as to generate
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similar accumulation and duration moment ratios com-

pared to Miami Airport observations (see caption), and

we use a value of C5 0:2mmh21 adequate for mean

moisture convergent conditions. No further attempts to

tune the model were made. To make the output more

consistent with observations, we integrate the model for

200 years (for consistent statistics) using a time step of

1min and from this we calculate hourly precipitation

values, which are used as the basis to calculate the re-

maining statistics. With some differences, Fig. 6d shows

good qualitative agreement with observations. Themodel

does generate PDFs well fitted by gamma distributions,

and exhibits a decrease in the power-law exponent with

increasing averaging interval, with cutoffs in line with

observations.

The decrease in power-law exponent with increasing

averaging interval tavg can be explained by revisiting

section 4, as well as by inspecting (18). As tavg increases

the number of events distribution (analogous to the daily

number of events distribution in Fig. 3b) is weighted to-

ward more events per interval (simply reflecting the fact

that there are more precipitating events in a month than

FIG. 6. (a)Accumulation, 3-h, 12-h, and daily precipitation distributions calculated using 1min data (1 Jan 1998 to

14 Sep 2012) from the DOE ARM site at Manus Island (2830S, 1478250E; 4m altitude). (b) Accumulation, daily,

2-day, and 5-day precipitation distributions calculated using 1 h data (1950–2013) from the Miami International

Airport station (258800N, 2798700E; 10.7m altitude) that is part of the NOAA/NCEI Climate Data Online System.

(c) Accumulation, 3-h, 12-h, and daily precipitation distributions calculated from a 100-yr integration of the model

with on–off precipitation. (d) Accumulation, daily, 2-day, and 5-day precipitation distributions calculated from a

200-yr integration of the model with on–off precipitation. In all cases we superimpose fits of the form (2) or (4) as

appropriate, with distribution parameters calculated following appendix A. Note the different x and y axes in the

left vs the right columns. Parameters were chosen to give similar accumulation and duration moment ratios as

observations, resulting in the same set of parameters in both cases: R0 5 9mmh21, DP 5 17mmh21, E 5
0.1mmh21,C510:2mmh21,DE5 3mmh21/2, and b5 0.2mm. All model parameters are also listed in Table S1.
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in a day), which increases the contribution of the less

asymmetric conditional precipitation distributions pn,

(13), in (14)
�
pP 5�nmax

n51 wnpn

�
. This shifts the resulting

probability from small to larger values, flattening the

power-law range, resulting in a smaller tP value, and

even a negative tP for long enough averaging interval.

At this point it would be more convenient to return to

the usual gamma distribution definition in (1), but for

consistency with the rest of the paper we continue using

tP and PL (keeping in mind the translation between (1)

and (2), u 5 PL, and k 5 1 2 tP). The relatively small

increase of PL with averaging interval in the model

occurs because the ratio s2
w/w [which is the main con-

trol on PL for different tavg in (17)] increases slowly

with increasing tavg. This is discussed in more detail

below.

ASYMPTOTIC DYNAMICS FOR LONG AVERAGES

We showed in Fig. 4 that the daily precipitation cutoff

is set by the storm accumulation cutoff. As the average

interval increases the effects of the aggregation of dif-

ferent storm accumulations start shifting the balance

of terms that determines the value of P̂L in (17). The

temporal aggregation of storms starts dominating P̂L

when

w*
s2
w

w
1

s
L

2s
. (20)

At this point P̂L can no longer be interpreted as a cutoff,

but rather simply as a scale parameter, and t̂P , 0. How

short the averaging interval must be for (20) to hold

depends on local climate conditions. For a given sL, re-

gions characterized by mean moisture convergence will

tend to satisfy the inequality faster. This can be observed

in Figs. 7a,b where we show the values of P̂L and t̂P
calculated from several integrations of (5)–(7), together

with their analytical approximations in (17) and (18),

for precipitation averages ranging from 1 to 180 days.

Two cases are shown representative of mean moisture

divergent and convergent conditions: E1C5 0 and

0.3mmh21, respectively, all else being equal. For the

two cases shown here the inequality is satisfied for a

26 day average in the mean moisture divergent case, and

for a 4 day average in the mean moisture convergent

case (Fig. 7b). That is, we expect roughly similar shapes

of the distribution for averaging intervals on the order

of a month in dry areas compared to averaging intervals

on the order of days in wet areas.

From the central limit theorem (see von Storch and

Zwiers 1999) we expect thatsw/w; 1/w1/2 asw increases.

That is, the number of precipitating events becomesmore

certain and localized aroundw as tavg increases (Fig. S10).

This implies thats2
w/w tends to a constant for long enough

tavg, which according to (17) implies that P̂L eventually

saturates and no longer keeps increasing with increases in

averaging interval. This process occurs faster for mean

moisture convergent regions (Fig. 7) as it depends on the

mean number of events w. In the limit where s2
w/w is

constant, it can be shown from (18) that

t̂
P
}2w}2t

avg
. (21)

Indeed t̂P and the mean number of precipitating events

w in tavg are very well anticorrelated. This explains

how fast tP decreases for the mean moisture convergent

region case (Fig. 7b). We note that as w/‘ then

t̂P /2‘ and the gamma distribution tends to a Gaussian

(Thom 1958; Ropelewski et al. 1985), as might be

expected from the central limit theorem. This tran-

sition to a Gaussianity process occurs faster for wet

regions.

While these conclusions have been made in basis of

the simple model, it should be emphasized that they

have corresponding behavior in observations. Figures 7c

and 7d show similar plots for P̂L and t̂P, respectively, as

a function of averaging interval for 64 years of Miami

Airport hourly precipitation data. We observe qualita-

tively similar curves, with P̂L increasing with averaging

interval, and apparently saturating for long-enough tavg
(although this occurs more slowly with tavg than in the

model). The parameter t̂P also decreases almost linearly

with averaging interval. We note that the parameters

of the model were not tuned to match this particular set

of observations, which may explain some of the dis-

crepancy in the value of P̂L compared to observations.

Typically across the parameter space, s2
w/w tends to a

constant faster in the model compared to observations,

which contributes to P̂L saturating for smaller values in

the model.

7. Conclusions and discussion

There is a long tradition of using gamma-like distri-

butions to represent temporally averaged precipitation

distributions. There has been little justification for their

use beyond being a distribution bounded by zero that

can represent skewed data (Ropelewski et al. 1985;

Wilks and Eggleston 1992). Here we present a more

fundamental view on how gamma-like distributions

arise as a good fit to represent precipitation PDFs.

To address this question, we use two simple stochastic

models that, despite their simplicity, condense what is

arguably the most important aspect that explains ob-

served precipitation distributions—the competition in

the moisture budget between fluctuations by moisture
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convergence and dissipation by moisture loss due to

precipitation. Under this simplified framework, gamma-

like distributions arise by the interplay between the

distribution of storm accumulations (from event onset to

termination) and the distribution of the number of these

storms (number of events distribution) in the averaging

interval of interest. The distribution of accumulations

can be physically derived from the moisture equation,

a fundamental equation of atmospheric models (SN14;

N17), with the distribution shape consisting of a rela-

tively sharp power-law range with an exponential cutoff

sL for large sizes. Here we extend the insight gained

from the study of accumulations to temporally averaged

precipitation distributions by noting that the total

precipitation falling in the temporal average of interest

(for instance a day) basically consists in the addition of

different accumulation events occurring within this one

day period (or other tavg). This leads to higher proba-

bilities of larger values and smaller probabilities for

smaller values with respect to accumulations, yielding

power-law exponents for daily precipitation distribu-

tions that are strictly smaller than the underlying accu-

mulations. In addition, the resulting daily precipitation

distribution also features an exponential cutoff, with

properties inherited from the underlying accumula-

tions. This results in a daily precipitation PDF that

can be well fitted by gamma distributions.

There are several implications arising from this frame-

work. From previous research (SN14; N17) we know that

the accumulation distribution cutoff is proportional to the

FIG. 7. Gamma distribution parameters (estimated using the method of moments) as a function of averaging

interval tavg. (top) Estimations of (a) P̂L and (b) t̂P for different model runs (with an integration time step of 1min)

for tavg ranging from 1 to 180 days. Two sets of runs are shown, one under moisture-convergent conditions

(C510:2mmh21) and one under moisture-divergent conditions (C520:1mmh21), with E 5 0.1mmh21. The

remaining model parameters are R0 5 10mmh21,DP 5 15mmh21/2,DE 5 3mmh21/2, and b5 1mm. All model

parameters are also listed in Table S1. To reduce fluctuations, especially for longer tavg, in each case estimations for

10 independent 100-yr runs are averaged and then a 5-day runningmean is applied [except for inset in (b)]. (bottom)

MiamiAirport observations (1950–2013) of (5-day runningmean) (c) P̂L and (d) t̂P as a function of tavg using hourly

precipitation as the basis.
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size of moisture convergence fluctuations in the precipi-

tating regime (sL }DP). Here we show that this statement

can also be made for daily precipitation (or similar tavg).

That is, the daily precipitation cutoff is also proportional to

the sizeofmoisture convergencefluctuations (PL} sL}DP).

The proportionality between sL and PL has been observed

to occur over the United States (MN18), and this frame-

work provides explanation for this observational result.

The importance of shifts in the accumulation cutoff

has been shown in general circulation models (N17)

and observations (MN18). These shifts in cutoff, pro-

portional to changes inDP, involve increases inmoisture

(thermodynamic contribution) and changes in conver-

gence (dynamic contribution) (Pfahl et al. 2017; Norris

et al. 2019b)—note that both effects enter into the same

parameter of the PDF. In most regions this implies an

increase in sL, which extends the accumulation power-

law range, yielding approximately exponential increases

in the probability of the largest accumulations (N17;

Norris et al. 2019a). One of the main conclusions of this

work is that a similar increase in probability of daily

(or similar averages) precipitation extremes occurs as

moisture increases. In this case the changes in proba-

bility will be slightly more complicated than for accu-

mulations, as the power-law exponent will also change

as DP increases [see (18)], and also depends on changes

of the dry regime dynamics.

To illustrate this, we consider the effect that a postu-

lated increase in the amplitude of fluctuations of mois-

ture convergence under a global warming scenario has

on daily precipitation distributions. Figure 8 shows the

risk ratio (Otto et al. 2012; N17), defined as the ratio

of the probability (conditioned on event occurrence) of

daily precipitation larger than a certain amount (x axis in

Fig. 8) in the warmer compared to current conditions,

for two different cases calculated using long runs of

the ramp precipitation model. In the first case (red)

we consider a 21% increase ofDP andDE, which would

correspond to a Clausius–Clapeyron scaling with 38C
warming (increase of 3 3 7%) in the amplitude of

moisture convergence fluctuations. In the second case

(blue), only DP scales up. This case can provide in-

sight into the effect of changes in vertical velocity

(which are linked to changes in the dynamic contribu-

tion to moisture convergence via the continuity equa-

tion) that are asymmetric for ascending and descending

regimes that have been suggested to occur under global

warming (Pendergrass and Gerber 2016). In both cases,

increases in DP yield increases in the daily precipita-

tion cutoff PL with resulting exponential increases in

the probability of the largest daily precipitation values,

much as it occurs for accumulations. Similar increases

in risk ratio for extreme daily precipitation have been

observed in the United States during recent decades

(MN18). Themain difference between the two cases is in

how the power-law exponents adjust, which points to the

role of the dry regime dynamics. In the more symmetric

first case—with increases in both DP and DE—the

power-law exponents are similar in current and warmer

conditions (as is the case for accumulations), resulting in

exponential increases in risk ratio starting in the mod-

erate daily precipitation range. In the second case tP
adjusts, increasing its value for warmer conditions. This

results in a reduction in the probability of moderate

daily precipitation, with exponential increases in risk

ratio starting for larger values. We argue that the simple

arguments laid out here may account for changes in the

occurrences of extremes in the daily precipitation dis-

tribution that have already been observed (e.g., Kunkel

et al. 2013; MN18) or that have been projected to occur

for climate warming scenarios (Fischer and Knutti 2016;

Pendergrass 2018).

The simple scaling argument (PL } DP) also provides

explanation for other relations regarding daily precipi-

tation extremes found in the literature. Several studies

have shown the scale parameter (our PL) of gamma

distributions to be a useful indicator of changes in daily

FIG. 8. Risk ratioR(x), calculated asR(x)5
Ð ‘
x
pGW
P dP/

Ð ‘
x
pHist
P dP,

where pHist
P is the daily precipitation distribution under current

conditions and pGW
P is the daily precipitation distribution under

warmer conditions, from 1000-yr runs of the ramp precipitation

model. Parameters are given in Table S1, with warmer conditions

represented in case 1 (red) by both precipitating and non-

precipitating moisture convergence noise amplitude DP and DE

scaled up by a factor of (11 g), where g5 33 0.07, whereas in case

2 (blue) only DP scales. The calculated gamma distribution pa-

rameters in case 1 are P̂Hist
L 5 41mm, P̂GW

L 5 50mm, t̂Hist
P 5 0:75,

and t̂GW
P 5 0:75, and in case 2 are P̂Hist

L 5 41mm, P̂GW
L 5 50mm,

t̂Hist
P 5 0:75, and t̂GW

P 5 0:79.
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precipitation extremes (Groisman et al. 1999; Wilby and

Wigley 2002; Watterson and Dix 2003; MN18). Our

analytical results, (17), provide a more formal justi-

fication of this, and suggest that changes in PL may

also be used to track changes in extremes for other

relatively short averages. Another aspect that may be

explained by this simple framework is the increase in

daily precipitation variability observed in global warm-

ing model projections (Pendergrass et al. 2017). Not

only does PL scale with moisture availability in our

model, but our results also imply a similar scaling for

daily precipitation variance s2
P [see (10) and (16)].

Increases in s2
P occur primarily by increases in storm

accumulation variance at daily scales, although in-

creases in the variability in the number of storms,

(16), can also enter into play, especially at longer time

scales. The relative contribution to these changes could

be evaluated in a climate model.

Overall, for daily precipitation (or other relatively

short temporal average, as elaborated below) the wet

regime controls to a great extent the resulting time-average

intensity distribution. Changes in the dry regime (with

wet regime fixed) modify the resulting distribution

to a secondary extent, with slight adjustments to the

power-law exponent. This dependence on the dry re-

gime, encapsulated in changes in mean moisture con-

vergence C (orDE), may be relevant to explain changes

in the distribution under global warming in subtropical–

midlatitude transition zones (e.g., Garreaud et al. 2017;

Swain et al. 2018), that may occur in association to a

poleward expansion of subtropical high pressure regions

(Lu et al. 2007; Frierson et al. 2007; Kang and Lu 2012;

Levine and Schneider 2015). All else fixed, regions

characterized by mean moisture convergence have a

gentler power-law range compared to regions charac-

terized by mean moisture divergence in the model.

Although we focus on daily precipitation, the frame-

work presented here applies to other averaging intervals

as well. For shorter, subdaily averaging intervals, caution

is required when there is not a good separation between

the averaging interval tavg and the event duration cutoff

tL. The computation using mixture distributions that ex-

plains the resulting gamma-like distributions in section 4,

and the analytical approximations for t̂P and P̂L, (17) and

(18), may become poor approximations for short av-

erages (as tavg ; tL). However, the numerical sto-

chastic model generates subdaily distributions that

resemble observations (Figs. 6a,c), and this suggests a

smooth evolution of behavior with averaging interval. In

all cases there is a tendency for lower values of t̂P as the

averaging interval tavg (3-, 12-, 24-h) increases. Thus, the

qualitative rationale for the relationship of the gamma

distribution to the accumulation distribution continues

to work over some range of subdaily time scales (which

may have a regional dependence because tL can vary).

For longer averaging intervals, tavg � tL (i.e., much

longer than the precipitation duration cutoff, which tends

to occur for daily or longer averages), we can demonstrate

that the daily precipitation power-law exponent is strictly

smaller in magnitude than the accumulation power-law

exponent. Because it typically rains more than once per

averaging interval (Fig. 3b), the precipitation intensity

distribution, (14), as a mixture of the conditional dis-

tributions given by (13), will have less probability than

accumulations for small values, and more probability

for larger values, yielding a less steep precipitation

intensity power-law range than for accumulations. Simi-

larly, longer averages will have a number of events distri-

bution weighted to a larger number of events within tavg,

yielding power-law exponents that eventually change sign

for sufficiently long averages. This argument leads us to

conclude that t̂P decreases monotonically with averag-

ing interval tavg (giving allowance to sampling variations

in observations). In fact, for long enough tavg, we show

that2t̂P is linearly proportional to the mean number of

events w per averaging interval tavg.

For regions with plentiful moisture supply, the para-

digm of thinking about a power law and cutoff for the

time-average precipitation distribution applies up to an

averaging interval measured in days, with PL scaling

with moisture. For much longer averaging interval, the

resulting distribution begins to have properties not much

different from a Gaussian, in which case changes in the

mean and variance, (15) and (16), may be more useful.

In mean moisture divergence regions the power-law

and cutoff paradigm may be valid for longer tavg (on

the order of a month), as the power-law exponent de-

creases slowly due to the mean number of precipitating

events w being considerable smaller in this case. Thus,

the framework presented here allows a window into the

evolution of the precipitation distribution as a function

of different time scales and climate conditions.
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APPENDIX A

Estimation of Accumulation and Temporally
Averaged Precipitation Distribution Parameters

To estimate parameters of the distributions in Figs. 2

and 6 we use a simple multivariate linear regression of

the binned probabilities, which we assume have a shape

px ; x2tx exp(2x/xL), onto the accumulation or tempo-

rally averaged precipitation sizes (represented as x here).

The parameters are calculated by assuming a relationship

between log(p) and functions of x as follows:

log(p)5 c
1
1 c

2
log(x)1 c

3
x , (A1)

and regressing to estimate the ci coefficients. The pa-

rameters are then given as tx 5 2c2, and xL 5 2(1/c3).

This way to calculate parameters is consistent for both

accumulations and daily precipitation distributions and

generally give more consistent fits for variation in data

resolution. We note that this methodology has a small

dependence on the binning scheme used. The parame-

ters calculated in this way are proportional to parame-

ters calculated using either maximum likelihood or the

method of moments (Fig. S1).

APPENDIX B

Distribution of Wet- and Dry-Spell Durations

The distribution of event durations pt, that informs

the range of validity of the analytic approximations, is

derived in SN14 for the case of on–off precipitation as

a rescaling of the accumulation distribution, (9):

p
t
5

tffiffiffiffiffiffiffiffi
pt

L

p exp

�
2t

t
L

�
exp

 
2

t2

t
L
t

!
exp

�
2

t

t
L

�
t23/2 ,

(B1)

with t the event duration. The mean duration t and the

duration cutoff tL are given by

t5
b

R
0

, t
L
5

2D2
P

R2
0

. (B2)

The analytical solution for the distribution of event

durations in the ramp precipitation case can be adapted

from similar equations in the finance literature (Yi 2010),

discussed in section 2. An important point of this solution

is that tL5 1/a, which is used to numerically validate (11)

in this case.

The solution for the distribution of dry-spell duration

(SN14) has the same shape as (B1), but with mean dry-

spell duration tD 5b/(E1C) and dry-spell duration cut-

off tDL 5 2D2
E/(E1C)

2
(E1C$ 0).

APPENDIX C

Analytical Formulas for pn Distributions and
Moments

The starting point is to note that the accumulation

distribution given by (9) can be rewritten in a more

standard form for inverse Gaussians as

p
s
(m, l)5

ffiffiffiffiffiffiffiffiffiffi
l

2ps3

r
exp

"
2
l(s2m)2

2m2s

#
, (C1)

with l5 2s2/sL andm5 s. If, as in (12), we sample a value

si from the same ps distribution n times, then the variable

Pn 5�n

i si is distributed as ps(nm, n
2l), which is a par-

ticular case of a more general additive property of in-

verse Gaussians (Tweedie 1957; Folks and Chhikara

1978). Going back to the original variables, we find that

Pn is distributed as in (13).

The mean and variance of an inverse Gaussian such

as (C1) are given by s5m, and s2
s 5 (m3/l)5 (1/2)ssL.

From this we find that the mean hPni and variance

hP2
ni2 hP2

ni of the pn distribution are given by

hP
n
i5 ns , (C2)

hP2
ni2 hP2

ni5 ns2
s 5

n

2
ss

L
. (C3)

APPENDIX D

Derivation of Gamma Distribution
Parameter Formulas

The mth moment about zero hPmi of a distribution

pp is given by

hPmi5
ð‘
0

Pmp
P
dP . (D1)

Here pp is a temporally averaged precipitation distri-

bution. Using (14), this can be rewritten in terms of the

moments of the pn distributions, (13), which we denote

as hPm
n i, as
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hPmi5
ð‘
0

Pm �
nmax

n51

w
n
p
n
dP5 �

nmax

n51

w
n

ð‘
0

Pmp
n
dP

5 �
nmax

n51

w
n
hPm

n i . (D2)

From this we find, using (C2),

P5 hPi5 �
nmax

n51

w
n
hP

n
i5 s�

nmax

n51

nw
n
5w s (D3)

(note that w5�nmax

n51 nwn), which is the same as (15).

The demonstration of (16) goes along the same lines:

s2
P 5 hP2i2 hPi2 5 �

nmax

n51

w
n
hP2

ni2
 
�
nmax

n51

w
n
hP

n
i
!2

.

(D4)

Using (C2) and (C3), this can be rewritten as

s2
P 5 �

nmax

n51

w
n
(ns2

s 1 n2s2)2 s2

 
�
nmax

n51

nw
n

!2

5ws2
s 1 s2

2
4�nmax

n51

n2w
n
2

 
�
nmax

n51

nw
n

!2
3
5 . (D5)

Noting that s2
w 5�nmax

n51 n
2wn 2

�
�nmax

n51 nwn

�2
, then we

arrive at expression (16).

We calculate P̂L and t̂P formulas using the method of

moments yielding

P5 (12 t̂
P
)P̂

L
,

s2
P 5 (12 t̂

P
)P̂2

L . (D6)

Noting that sL 5 2s2
s /s (SN14), this can be rearranged

to yield (17) and (18).
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